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Laminar separation in buoyant channel flows 
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A slow moving flow in a duct emerging into a quiescent negatively buoyant 
environment may separate from its inner wall prior to the lip. Buoyancy accelerates 
the flow, curving the streamlines within the duct away from the walls. The resulting 
deceleration at  the wall may be sufficient to provoke separation. The problem of 
the location of this separation point in a two-dimensional channel is studied. 
A potential-flow model is examined first to explore the large-Reynolds-number 
behaviour. The form of the potential-flow description in the vicinity of the assumed 
location of separation is characterized by the presence of a square-root singularity 
in the pressure gradient at the wall. This permits use of the ideas of viscous-inviscid 
interaction, proposed by Sychev (1972), to determine the separation location as a 
function of Froude and Reynolds numbers. Results obtained in the high-Reynolds- 
number limit show that the channel flow separates at  shorter distances from the 
entrance as Froude number is reduced. 

1. Introduction 
Most buoyant jets that we observe, e.g. smoke stacks, cooling towers, faucets and 

orifice discharges, appear to ‘separate ’ from the wall at the very lip of the duct they 
are leaving. Indeed more often than not they do so, but under certain conditions 
(usually low inertia-to-buoyancy ratio) they may ‘separate ’ from the wall before they 
reach the lip of the duct. This separation prior to reaching the lip is usually 
accompanied by penetration of the negatively buoyant fluid into the duct. This 
phenomenon can impair the performance of a device like a cooling tower by reducing 
the available draught height. Jorg & Scorer (1967) performed an experimental study 
to determine the depth of this penetration, for laminar and turbulent flow in a duct 
of circular cross-section. They found that the presence and extent of penetration 
depends on many parameters: Reynolds number, Froude number, duct height- 
to-diameter ratio, upstream velocity profile, wall roughness and heat transfer through 
the duct wall. The Froude number (ratio of inertia to buoyant forces) emerges as the 
critical parameter, and penetration is found to increase with lower Froude numbers. 
However, they were unable either to eliminate or quantify the effect of the other 
parameters. 

A clearer understanding of this problem may follow from theoretical study of an 
idealized steady, two-dimensional laminar flow undergoing separation, subject to 
buoyant, viscous and inertia forces in a model problem. In this paper the effects of 
those forces on the location of separation is studied in the limit of large Reynolds 
number (based on duct width). 

t Present address : Department of Aeronautics and Astronautics, Gas Turbine Laboratory, 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 
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FIGURE 1. Schematic of the model problem considered. 

The problem shown in figure 1 is considered. Fluid of density p and kinematic 
viscosity v flows through a two-dimensional insulated duct of width 2b and height 
H .  The flow at the upstream location is assumed to have a uniform velocity profile. 
At some downstream distance x, the fluid breaks away from the wall to form a free 
jet in an otherwise stagnant environment of higher density po. Gravity g acts to 
provide a net body force per unit volume of ( p o - p ) g  in the direction of motion. The 
resulting increase in the velocity forces the free jet to converge toward the duct 
centreline. Of course, the initially straight streamlines (far upstream in the duct) must 
begin to deflect inward even before the emergence of the jet, and this causes a 
deceleration near the wall. As a result, the wall boundary layer must presumably 
separate from the wall at the distance x ,  from the duct entrance. It is our task to 
find 2, from the interaction of the flow phenomena just described. 

The flow is assumed to be two-dimensional, incompressible, laminar and steady 
throughout. Moreover, surface tension is neglected. We define dimensionless variables 
by choosing b as the unit length and U as the unit velocity. Thus the problem is to 
find 

x, = x,(Re, Fr) as Re+ a, (1) 

where Reynolds number Re = U b / u  and Froude number Fr = p U 2 / ( p o - p ) g b .  
For large Reynolds numbers, the viscous forces will in fact become negligible in 

most of the flow field. Only in the boundary layers will viscosity remain important, 
and if the boundary layer separates from the wall, it will do so at a unique position. 
Beyond that position, the boundary layer will continue as a free vortex sheet, unable 
to support further streamwise pressure variation. To find the location of separation, 
it is necessary to consider both inviscid potential and viscous-boundary-layer flows. 

First, we shall formulate and solve the potential-flow problem, with the location 
at which the free vortex sheet leaves the wall remaining unknown for the time being. 
This location will be determined later, from the requirement that the potential-flow 
and the limiting viscous-flow pictures are mutually consistent, using ideas of 
viscous-inviscid interaction postulated by Sychev (1 972). 

2. Potential flow 
The domain of the potential-flow problem is shown in figure 2. The free vortex sheet 

is assumed to leave the wall at the point S, also referred to here as the point of 
breakaway to distinguish it as arising out of purely inviscid considerations. It is 
convenient to choose the origin of the coordinates at  S. The part of the channel wall 
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FIQURE 2. Schematic of the potential-flow problem. 

beyond S (for which x < 0) is of no importance, since it is located in the stagnant 
separated region. Assuming symmetry, only half the problem shown in figure 1 need 
be considered. The wall and the symmetry boundary are streamlines. The stream 
function on the symmetry boundary (y = 1) is taken to be zero. It follows from the 
choice of dimensionless variables that + = 1 on the wall (y = 0) as well as the free 
surface. A second boundary condition on the free surface is that the static pressure 
equals that in the stagnant environment at that level. By use of the Bernoulli 
equation, this condition may be transformed into a statement about the flow speed 
on the free surface: 

(2) 
22 

q 2  = u:-%, 

where uo is the flow speed a t  S. The velocity on the wall, and therefore uo, are features 
of the solution to be found. 

The foregoing boundary condition on the free surface (above S) requires that the 
square of the flow speed increases along the free surface, while on the same streamline 
below S, velocity normal to the wall is zero. This sudden change suggests the 
possibility of a singularity at S. To investigate this possibility we seek a description 
of the flow in the close vicinity of S. The governing equation is the Laplace equation, 
and the relevant boundary conditions are that the wall and the free surface constitute 
a single streamline, and the pressure condition (2) is satisfied at the free surface. Based 
on known potential-flow descriptions of how free streamlines leave a solid wall (see 
Thwaites 1960) we anticipate the following expansion for the complex velocity u-iw 
in the vicinity of S: 

(3) 

where IzI = lx+iyl is small. In order for the wall upstream of S ( z  = x > 0 )  to be a 
streamline, each coefficient in the expansion (3) must be real: 

u-iv = - (u,+ k d + k ,  z + k ,  z j + .  . .), 

Im (k, k,, k,, . . .) = 0. (4) 
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We next specify that u, is not zero, that is the point S is not a stagnation point. 
Later we shall consider that possibility and conclude that it is unrealistic. With u, 
not zero, the free-surface shape in the vicinity of S is given by 

2k ( - x ) t  
y = - - + O ( - z ) f  (. < 0). 

3 uo 

Once the local shape of the free surface is known, the u- and v-velocities on the free 
surface can be found from (3). The requirement that these velocities satisfy the 
pressure boundary condition (2), leads to an additional constraint on the coefficients 
of the series, namely 

(6) 
2 

Fr 
?k2+2uok2 = -. 

The series in (3) together with constraints given by (4) and (6) comprise a 
potential-flow solution in the vicinity of S, correct to O(x).  The actual numerical 
values of u, and k will depend on the Froude number ; however, this dependence can 
only be found from the solution of the potential problem over the full domain. The 
higher-order coefficient k,  can then be determined from (6) if necessary. In  principle, 
the pressure boundary condition ( 2 )  can be satisfied to any desired order providing 
additional constraints similar in spirit to (6). We shall, however, only be interested 
in the leading-order quantities u, and k .  

The above analysis also shows that the potential-flow solution in the vicinity of 
S for this problem has the same form (given by (3)) as that of the known solutions 
for free streamlines leaving a solid wall. The particular geometry of the problem and 
buoyancy affect the local description inasmuch as they determine the numerical 
values of the coefficients in (3). Equation ( 5 )  shows that the free surface leaves the 
wall tangentially but with infinite curvature at S. Thus, if the wall itself has finite 
curvature, the leading coefficient k must be positive in order that the free surface does 
not enter the wall. 

From (3) the velocity on the wall in the upstream vicinity of S can be written as 

u = -U, -k&+O(x)  (X > 0).  (7)  

From Bernoulli’s Law, one can then infer the pressure along the wall in the vicinity 
of S, with reference to some pressure p ,  (say) and density p,  to be 

p = p , - p u , k z ~ + O ( x )  (Z > 0). 

For non-vanishing k ,  the square-root term in the pressure leads to a singular pressure 
gradient a t  S, given by 

- 
Pz  = PUOk+O( l )  (z > 0). (8) 

This square-root singularity is characteristic of known solutions of the theory of ideal 
fluids with free streamlines. (See for example, Thwaites 1960.) 

The pressure gradient implied by this inviscid solution in the vicinity of breakaway 
will be important when we study the effect of non-zero viscosity. Therefore, we 
particularly need to know both the strength of the singularity k and the velocity u, 
as functions of the problem parameters, that is, 

k = k(Fr ,  zs), u, = uo(Fr, zs)- 
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To determine the above relationships, we return to the full potential-flow problem 
shown in figure 2. 

Because the fluid velocity is not uniform in magnitude on the free surface, classical 
free-streamline theory cannot be used to solve this problem analytically. The 
principal difficulty arises from the fact that unless the magnitude of the velocity is 
constant on the free streamline, one cannot determine the domain in the hodograph 
plane beforehand. Hence we shall seek a numerical solution to the problem. In 
addition to the boundary conditions on the wall and the free surface, we shall also 
need suitable boundary conditions at the upstream, downstream and symmetry 
boundaries. A t  the symmetry boundary ( y  = l ) ,  the stream function + = 0 as noted 
earlier. A t  the upstream boundary (z = zs) we specify w(z,, y )  = 0.  This is an artificial 
boundary condition since only in the limit of zs+ 00 would it imply - u(zs, y) = 1. The 
downstream boundary condition is v( - co , y) = 0. Since the jet thickness approaches 
zero as z+ - 00, this boundary condition is appropriate. Actual numerical calcula- 
tions, however, will be carried out with truncation of the boundary at  a finite distance. 

Since the shape of the free surface is unknown a priori, an iteration procedure will 
be needed to find a potential-flow solution. The simplest procedure would be first to 
solve the linear problem of two-dimensional potential flow in a reasonably guessed 
domain. The resulting flow speed on the free surface would presumably not satisfy 
the boundary condition (2). One would then suitably update the domain boundary 
to better satisfy that boundary condition. One would repeat these two steps until 
the free surface boundary condition was well satisfied. 

For reasons cited below, the Boundary-Integral-Equation Method (BIEM) seems 
particularly attractive for the first step. The numerical computations are performed 
only on the boundary of the domain being considered, so that the effective 
dimensionality of the problem is reduced by one. Moreover, interior solutions can be 
obtained subsequently by a suitable marching procedure if needed. But this is not 
necessary at every iteration because the surface velocity needed to update the domain 
as well as the strength of the singularity are sole functions of boundary quantities. 
The BIEM uses shape functions to represent functional values between discrete 
nodes. If the nature of the singularity is known, it can be used to substitute a special 
interpolation function (near the singularity) which more closely approximates the 
exact result (Liggett & Liu 1983). On the free surface, in the downstream vicinity 
of S, where -z < e, a linear interpolation function to represent the flow-speed 
behaviour is consistent with (2), provided uo % (2e/Fr)k Whereas on the wall, in the 
upstream vicinity of S, a square-root-type interpolation function is consistent with 
(7). Our calculations, however, are carried out with a linear interpolation function 
over the entire boundary. To overcome this shortcoming, calculations are repeated 
with progressively smaller nodal distances in the vicinity of S, until a converged 
solution is found. 

The foregoing procedure allows us to find accurate solutions for Fr > 0.5. If the 
Froude number is reduced below 0.5, it seems possible that uo may vanish. In such 
a situation the description of the flow in the vicinity of S given by (6)-(8) is no longer 
valid, and with uo zero, a linear interpolation function near S would no longer be 
suitable. A more complete discussion of this problem and the details of the BIEM 
numerical procedure are given by Modi (1984). Since our subsequent analysis is valid 
for large Froude numbers only, the inability to find accurate potential-flow solutions 
for Fr < 0.5 does not pose a serious limitation, and we may use the BIEM to provide 
the shape of the free surface as well as the velocity on the wall. 

The results for the wall velocity ( - u)  are shown in figure 3 for four different values 
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FIQURE 3. Wall velocity -u for various Froude numbers. 
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FIQURE 4. Strength of singularity k as a function of Froude number. 

of Fr, with z, fixed at 0.5. The intercept and the slope of these curves at 2 = 0 provide 
us with uo and k for each Fr according to (7). Numerical calculations with other values 
of z, reveal that the wall velocity profile near S (and thus uo and k) is insensitive to 
the actual value of z, provided z, is larger than 0.5. The downstream boundary 
condition was located far enough from S to ensure insignificant influence on u, and 
k as well. Thus, our numerical solution does in fact represent that for an infinite jet 
and a semi-inhite cylindrical duct, for which the solution is obviously independent 
of the value of 2,. The artificial boundary conditions prescribed at the start and end 
of the computational domain thus prove to be effective. 

Both k and uo are obtained as functions of Fr alone. The variation of k with Fr 
is shown in figure 4 and that of u, with Fr in figure 5. We observe that the strength 
of the singularity k diminishes with increasing Fr and it should eventually go to zero 
as Fr  goes to infinity. The velocity uo at S increases with Fr and should eventually 
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FIQURE 5.  Flow speed at breakaway uo as a function of Froude number. 

go to unity as Fr goes to infinity. For large Fr, the variation of k and uo with Fr is 
well represented by 

uo x 1-- Oa4 
Fr ’ Fr ’ (Fr % 1). 
1 kx-. (9) 

The same potential-flow problem was solved independently by Vanden-Broeck 
(1984) using a collocation scheme. He presents results for uo and the shape of the free 
surface as a function of the Froude number. Inferring k from his results would require 
additional calculation; however our uo values are in good agreement with those 
obtained by him. This comparison is made for Fr > 0.5 only, since our numerical 
procedure does not allow us to find accurate solutions at lower Froude numbers. With 
the inviscid flow in the vicinity of breakaway (S) known, we may now address the 
question of determining zs itself, as a matter of boundary-layer separation. 

3. Viscous-inviscid interaction 
In  order to fix the correct physical location of the separation point, we must study 

the viscous flow inside the boundary-layer region. It is expected that this will remove 
the indeterminacy in the location of S. Indeed, on physical grounds, we expect the 
solution to be uniquely defined in terms of the two non-dimensional numbers Re and 
Fr, as we already have indicated in (1). 

Consider first the situation in the classical boundary-layer approach. To study the 
applicability of any of our potential-flow solutions, we might use the wall pressure 
gradient (8) found previously to integrate the boundary-layer equations. The failure 
of such an approach is now well known (see Smith 1982 for a review). The assumed 
potential flow, with separation in the duct at a finite position xs and a non-zero Froude 
number, is physically not possible in the limit of infinite Reynolds number. In fact, 
if the Froude number remains finite while the Reynolds number approaches infinity, 
the only possibility for a physical solution is that the separation occurs right at  the 
entrance of the cylindrical duct, at the position satisfying the Brillouin-Villat 
condition (Birkhoff & Zarantonello 1957). 
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I n  order for the separation to  occur inside the cylindrical duct itself, which is the 
case of present interest, the only possibility is that  the Froude number is also high 
when the Reynolds number is high. A high Froude number implies a weak pressure 
singularity ( k + O  when Fr + OC) in (8)). In  the presence of a weak pressure singularity, 
Sychev (1972) proposed a consistent description of separation. The theoretical picture 
proposed by Sychev was a generalization of the ‘ triple-deck ’ flow structure discovered 
earlier by Stewartson & Williams (1969) and by Messiter (1970). Sychev’s theory 
of viscous-inviscid interaction at  separation is based on the same outer 00w as 
described by (7 )  and (8). He finds that the main flow in the boundary layer is inviscid, 
owing to  the large pressure gradient near separation. Consequently, viscous forces 
are important only in a thin sublayer adjacent to the wall. The flow acquires a 
three-region character, comprising the outer potential flow, the inviscid main 
boundary layer and the viscous sublayer. Well upstream of the interaction region, 
the pressure gradient will be negligible as a result of the assumption of large Froude 
number and parallel-walled geometry. It is therefore evident that  the wall shear a t  
this location will be described by classical boundary layer theory as 

uy z Reb, 

where r for a parallel-walled channel might be approximated by the Blasius 
semi-infinite flat-plate solution as 

On examination of the flow on a very small O(Re-i) lengthscale, Sychev postulated 
that outer and boundary-layer flows would be possible in the interaction region. The 
problem depends upon the parameters k ,  uo, p,  v and 7 and requires that Re& be large. 
To verify Sychev’s hypothesis, Smith (1977) sought a numerical solution. By suitable 
normalizations he first reduced the problem to one involving a single parameter, K ,  
given by 

For a value of K = 0.44, his results did indeed suggest the existence of a meaningful 
solution. He could not find a converged solution for other values of K .  Smith’s 
calculations were the best evidence for Sychev’s theory, in the absence of a 
mathematical proof of existence and uniqueness of the solution. Since then Korolev 
(1980) as well as Van Dommelen & Shen (1984) have used more accurate schemes 
and confirmed Smith’s findings. With numerical investigations pointing quite firmly 
to both the existence and uniqueness of a solution, there is significant confidence in 
Sychev’s theory. On this basis, we shall proceed to determine the location of the 
separation point; that is, the value of 5,. 

With K = 0.44, and k(Fr)  and uo(Fr)  from figures 4 and 5, we can find x,(Re, Fr) 
from (10) and (11).  For Re = 500 and 5000, the calculated separation location is 
shown in figure 6 as a function of Froude number. Since we know the behaviour of 
k(Fr)  and uo(Fr) a t  large Froude numbers from (lo), we can find an explicit expression 
for x, valid at large Fr, 

xs = 0.025 - , for Re&% 1,  [LAY Fr $ I .  

This expression represents the straight portion of the theoretical curves in figure 6. 
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FIGURE 6. Separation location 5, (distance from the duct entrance) as a function of Fr calculated 
for Re = 500 and 5000 (-), based on Syohev’s theory. A NavierStokes calculation for Re = 500 
is also shown (----). 

We also carried out a Naviedtokes calculation (see Modi 1984) of the same problem 
for comparison. The calculation was carried out for a duct of dimensionless height 
0.5 at Re = 500. The variation of the location of separation in the duct with Froude 
number is also shown in figure 6. For Froude numbers larger than about 5 ,  the duct 
separates at its lip (2, = 0.5) and thus only the results for lower Froude numbers are 
shown. It would be desirable to study longer ducts (so that separation occurs at larger 
Froude numbers) and larger Reynolds numbers, but both are computationally 
difficult. In  spite of this limitation, it is encouraging to see that the prediction based 
on Sychev’s theory follows a trend consistent with the numerical calculation. 

Before continuing, it should be pointed out that the triple-deck value of K = 0.44 
used above was obtained for a single fluid, whereas the case considered here is that 
of two fluids with different densities. In using the value for a single fluid here, we 
have assumed that the asymptotic solution near separation is not affected by the 
presence of the gravity force. For this assumption to be valid, the gravity forces must 
be small compared to  the pressure forces in the viscous region. Using the triple-deck 
scalings for pressure and length, we find that the ratio Apglp,  of the neglected gravity 
forces to the pressure forces is O(Re-tFr-l). The estimate indicates that this ratio is 
small in the large Re&, Fr limit considered here, justifying our use of K = 0.44 
obtained for a single fluid. The gravity forces will of course alter the behaviour of 
the flow downstream of separation in the separated flow. 

Note that, for the parallel-walled geometry under consideration, the strength of 
the singularity reduces with increasing Froude number but never becomes zero or 
negative. Thus the inviscid free streamline can break away from the wall at any 
arbitrary location. In  this regard, the situation here is quite different from that arising 
in the study of separation over airfoils or bluff bodies (see Cheng & Smith 1982; Smith 
1979) where k vanishes at some location on the body depending on the shape of the 
body. Consequently, in those studies the breakaway position to leading order depends 
upon the shape of body through the ‘smooth separation’ requirement. 

As noted earlier, for Froude numbers less than 0.5, the possibility of vanishing uo 
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FIQURE 7. Schematic of two possible flow configurations at S if uo = 0. (a) Leaving angle t x  with 
k = 0;  ( b )  leaving angle with k 0. 

cannot be ruled out, and in such a circumstance the description of the flow in the 
vicinity of S is no longer given by (6)-(8). 

For vanishing uo, examination of ( 5 )  shows that there are two distinct potential- 
flow descriptions possible in the vicinity of s, depending on whether k vanishes or 
not. With k = 0 and k, =+ 0, the free surface a t  S makes an included angle of in with 
the wall. With k =+ 0, the free surface at  S makes an included angle of $x with the 
wall. The flow configurations corresponding to these solutions are sketched in figure 
7 (a, b ) .  The boundary layers associated with these stagnation-point flows would 
experience an adverse pressure gradient over a finite distance in the limit of large 
Reynolds number. Consequently, non-interactive separation in the classical 
boundary-layer-theory sense would be expected ahead of any assumed location of 
separation S. If so, the only possibility for a physical solution would be separation 
ocurring right at the entrance of the cylindrical duct. The results shown in figure 6 
do not apply to separation occurring in such a fashion, and we believe that any 
possibility for stagnation where the flow leaves the wall would belong to flow regimes, 
perhaps unsteady, which are fundamentally different from that considered here. 

4. Discussion 
In this paper we have found the separation location x,(Fr, Re) for a buoyant flow 

in a two-dimensional insulated duct in the limit of large Reynolds and Froude 
numbers. The solution to the interaction problem depended on the history of the 
boundary layer through the normalized shear 7. The assumptions of cylindrical duct 
shape, constant velocity profile a t  duct entrance and laminar flow allowed us to 
estimate 7 from the Blasius flat-plate solution (lo), where the duct is also the proper 
development length for the laminar boundary layer. We may briefly note the effects 
of relaxing each of those assumptions. 

If the duct is convergent rather than cylindrical, the variation of 7 with distance 
along the wall is no longer given by (lo), but could be estimated from conventional 
boundary-layer theory. We would also need to evaluate uo and k for the new 
geometry; they would now be functions of x, as well as Fr. In view of this fact, it  
would not be possible to write an explicit expression like (12) for 2,. Rather, i t  would 
be necessary to solve (1 1) iteratively to find x,(Fr, Re). The strength of the singularity 
k for a convergent duct would be significantly lower than that of a cylindrical duct 
at a fixed Fr, because a convergent shape would tend to oppose deceleration of the 
flow along the wall. A lower k and a larger 7 compared to those of a cylindrical duct 
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would permit the flow in a convergent duct to remain attached to the wall to larger 
distances. 

The flow entering a duct might have a finite boundary-layer thickness, in contrast 
to the Blasius boundary layer discussed earlier. This also would contribute to an 
altered 7.  

Finally, we note that consideration of the high-Reynolds-number limit and the 
assumption of steady laminar flow prevent us from obtaining any description of the 
flow beyond the separation point, where some sort of mixing process must occur. Also, 
one must be aware that the density gradient across the inclined free surface may lead 
to flow instability. Future research should consider the unsteady, three-dimensional 
flow which might result. 
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discussions. We thank Dr Leonard L. Van Dommelen for his interest and valuable 
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